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MOTIVATION
Modeling the retention of colloidal particles in soils provides a better understanding of the 
danger of water contamination from viruses, bacteria or contaminants adsorbed on the 
colloids. We investigate the trapping of colloids by straining, a simple geometric mechanism: 
colloids transported by fluid remain in the soil when they arrive at constrictions in pore space 
too small to admit them. Pore throats have been typically considered the place where 
colloids are trapped. However, several column experiments offer clear evidence of trapping 
of colloids that are smaller than the smallest pore throat in the column.

CONCLUSIONS

• An existent theory of straining was extended to include gaps between pairs of grains as a potential 
locations for the trapping of colloids.

• The inclusion of gaps in the straining theory provided insight into the mechanisms that dominate 
straining: the scaling exponents for the “momentum-weighted” and “kinetic energy weighted”
straining rate constants bracket the empirical scaling exponents reasonably well. 

• A more detailed investigation into the dynamics of particle-grain collision is likely to improve the 
quantitative agreement.

• Applying the extended theory to void space near point contacts will be an important validation test.
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OBJECTIVE
Explain the mechanism of a long-standing anomaly in the straining of colloids: colloids too 
small too be trapped in the smallest pore throat in a granular medium are nevertheless 
retained.

HYPOTHESIS

Colloids are strained in gaps between pairs of grains besides throats between three grains.

1st TEST

Examination of Model Soils: Computer 
Generated packs of random mono-disperse 
spheres

Figure 2:  Trapping of particles in gaps and 
throats. Flow is perpendicular to the plane of 
the paper. Spheres 1, 2 and 3 have equal 
radius R and represent soil grains. Flow is 
assumed to be normal to the plane of the 
paper. The radius of sphere 4 is 0.2R, i.e., the 
20% of the radius of soil grains and it is 
retained in the pore throat. The radius of 
sphere 5 is 0.05R, i.e., 5% of the grain radius 
and it is strained in a gap between grains 1 
and 2 of size 0.03R. The radius of sphere 6 is 
0.03R and it is trapped in a gap of size 0.02R. 
The radius of sphere 7 is 0.02R, i.e., 2% of 
the grain radius and is shown in the pore 
throat for size comparison. Spheres 5, 6 and 
7 are too small to be trapped in the pore 
throat; nevertheless particles 5 and 6 are 
strained in gaps.

Figure 1: a) Three spheres simulating soil grains in space b) Cross section of a pore throat. A gap is 
defined as the void space between the centers of two neighboring grains

• Number density of gaps:  0.15 /R3

• Number density of small pore throats:  0.3 /R3

Figure 3: Example of a model soil (1000 spheres). 
The number density of gaps is comparable with the 
number density of small pore throats. The geometric 
analysis reveals that the occurrence of right sized 
gaps is enough to trap a significant number of colloids. 

2nd TEST

Explain the dependence of straining rate (kstr)
upon particle size (d/D)*
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Table 1:  Scaling Exponents obtained after using 
different assumptions on the Sharma and 
Yortsos theory

1.11Kinetic

2.25Momentum
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Figure 6:  The gap is modeled as a slit of width equal 
to the gap width wgap and length equal to twice the 
range of capture (2a). The arrows represent the 
direction of the flow.

Figure 5:  Scheme of the range of capture. The 
particle of diameter “d” is moving perpendicular to 
the plane of the paper. It will be trapped if it enters 
the gap, which has width wgap, within a lateral 
distance “a” of the center of the gap. 

Figure 4:  Detail of a gap between two spheres
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Figure 11: Straining rate constant (kstr) for different particle sizes 
(d/D), evaluated with the Sharma and Yortsos straining theory 
and the gap geometry and flow rates for a dense random packing 
of spheres. Five different assumptions have been considered in 
the theory. The results are shown together with the solutions from 
two of the experimental correlations having exponents 1.42 and 
1.25.* The values of kstr have been normalized for easier 
comparison of the slopes. 

Calculate flow in gaps

Slit model for gaps
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Figure 7:  ∇P in gaps is calculated from a steady state calculation of the flow in throats. a) Delaunay cells are 
tetrahedra whose faces correspond to pore throats. b) The center of the Delaunay cells that contain the two 
spheres having a gap and the center of the gap are in the same plane. c) Contours of Pressure in the plane defined 
by the centers of the Delaunay cells and the center of the gap. The gradient of pressure is nearly constant and this 
is found to be true nearly for all gaps in the reference porous medium.
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Figure 8:  Volumetric flow rate through gaps and 
volumetric flow through pore throats vs. distance 
from the inlet for particles of size d/D=0.05. The 
flow in gaps is about 3 orders of magnitude 
smaller than the flow in throats

*Bradford, S., Simunek, J., Bettahar, M., Van Genuchten, M.T., and Yates, S.: “Modeling colloid attachment, straining and exclusion in saturated porous 
media,” Environmental Sci. and Tech., 37, 2242-2250, 2003. 

PREDICTION OF STRAINING RATE: 
Sharma and Yortsos Theory
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Retention in Gaps is not guaranteed

Figure 9:  a) Front view of a gap showing the 
range of capture a for a particle of size d>w. 
The point A indicates the middle of the gap. b)
Front view of a gap showing possible locations 
where a particle of size d>w can be trapped. 
Particle 2 is trapped at the maximum range of 
capture. Particle 1 is trapped in the middle of 
the gap.

Figure 10:  a) Top view of a gap. The effective range of capture may 
be smaller than a. The trapping probability is 1 in point 1 and 0 in 
point 2. The green x's indicate the points where particles of size d>w 
touch both grains. b) Top view of a gap showing collision and 
bouncing of the particles. A particle can collide with the grain and 
escape from the gap instead of being trapped. 

a)

b)

a) b)

This research is supported by the US Department of Agriculture (award 2004-35102-14920)

Faster collisions (large u) and 
larger angles of incidence (β) are 
more likely to rebound the 
particle
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• Gap width of interest:  0.03R<wgap<0.1R

• Particle sizes investigated:  0.02<d/D<0.05

• R= grain radius

Contact: erodriguez@mail.utexas.edu

Based on experimental results


