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Project Overview

• Question: Are nitrogen and fine sediment 
synergistic pollutants in streams?

• Hypothesis: Fine sediments restrict 
hyporheic water flux and reduce the 
capacity for in-stream N processing.

• Approach: Stream ecosystem simulation 
modeling integrating geomorphology, 
hydrology, sediment transport, and 
biogeochemistry.



Strategy
• Assess geomorphic controls on multiple 

scales of hyporheic exchange
• Incorporate floodplain geomorphology into 

modeling system
• Integrate sediment routing model; assess 

affects on hyporheic flow patterns
• Integrate N-C-O biogeochemical model; 

perform simulation experiments to assess 
interactions between sediment and N 
dyanmics



Scales of Hyporheic Flow
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Modified from Dent et al. (2001) 



Scales of Hyporheic Flow
LIDAR-derived map of floodplain 
elevation relative to channel elevation; 
light areas are lower elevation



Scales of Hyporheic Flow

Poole et al. (In Prep.)



Scales of Hyporheic Flow
Frequency distribution of hyporheic flow path lengths in 

section of floodplain shown in prior slide



Model Geomorphic Influences on Hydrology

Hydrologic modeling approach: integrated ground- & surface-water flow network.  
Water flows among nodes (red dots) along links (dashed lines) on the surface and 
within the alluvial aquifer.
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Question: Given a desired node density, how can we use floodplain 
topography (LIDAR data) to optimize model node locations?

(See also Poole et al. 2002; 2004; 2006)



Model Geomorphic Influences on Hydrology

Hydrologic impedance is the difference between the lower sink 
elevation and the minimum elevation along the divide (i.e., the 
change in river stage necessary to overtop the divide).
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Floodplains can be conceptualized as 
mosaics of hydrologic sinks and divides.  
Surface water flow impedance of divides 
between floodplain sinks can be mapped 
from LIDAR data (Jones at al. In Prep).



Model Geomorphic Influences on Hydrology

Location of prior slide

• Sink areas are aggregated into larger patches (colored randomly, above) by 
merging sink areas across divides with low hydrologic impedance.

• Remaining boundaries of aggregated patches represent divides with highest 
impedance, and therefore represent dominant controls on surface water flux.

• To model system hydrology, one model node is associated with each aggregated 
floodplain patch, and each boundary is represented by a model link.



Sediment model

(Ferguson et al. 2006)

We have identified an existing sediment routing model, compatible with out 
hydrologic model, that predicts change in bed sediment sizes (Dm) as a function of 
flow velocity and sediment supply.



Biogeochemical Model
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Preliminary structure of in-stream biogeochemical cycling model, incorporating 
interactions among Nitrogen (green), Carbon (Orange), Oxygen (Blue), and 
Temperature (Yellow)
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