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OUTLINE: 
• Landscape thinking

• Specific advances in landscape nitrogen 
management.

• Some challenges in landscape nitrogen 
management.

• Prospects for the future.



Landscape thinking:
• Landscapes can be viewed as aggregations of 

“source” and “sink” areas, linked by surface and 
subsurface flows of water.

• Whole-landscape function can be readily measured 
at the watershed scale.

• First developed in agricultural watersheds in the 
southeast (GA), with observations of low nitrogen 
outputs from heavily fertilized watersheds with 
extensive riparian forest.

• Has lead to lots of research on “edge of field” 
nitrogen sinks.



Denitrification

NO3
- → NO2

- → NO → N2O → N2

- Anaerobic
- Heterotrophic (requires organic C)

• Expect high rates in wetland soils.

• Key component of the water quality 
maintenance function of riparian zones.



Edge of field approaches:

• Riparian buffer zones.

• Controlled subsurface drainage

• Constructed wetlands

• Bioreactors:
– Trench bioreactors (denitrification walls)
– In-line bioreactors 

• In-stream processing.



Riparian zones as denitrification 
“sinks” in the landscape.
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CHALLENGES:
• Flowpaths:

– Progress in riparian science and management is 
fundamentally constrained by our ability to understand the 
connections between the upland, the riparian zone and 
the stream.

• Hotspots:
– Need to identify and understand focus on hydro-bio-geo-

chemically active “edges,” especially at the riparian/stream 
interface.

• People:
– Are people who manage the land apply to think about and 

apply landscape management concepts and 
technologies?



An idealized riparian zone, functioning 
as a denitrification sink for nitrate:
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• Shallow groundwater moves through riparian 
ecosystem with anaerobic, denitrifying soil.



Flow path nightmare #1:  seeps

• Groundwater moves as surface flow across riparian 
ecosystem

• Lower groundwater N removal
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Flow path nightmare #2:  Deep 
bypass flow:

• Groundwater moves under riparian ecosystem
• Low groundwater N removal
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of riparian ecosystem

Aquiclude
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Ecohydrological models hold promise for 
depicting upland- riparian- stream connections.

Source:  Christina Tague, SDSU



Help is on the way . . .
• CUASHI (Consortium of Universities for the 

Advancement of Hydrologic Science, Inc.)
– “Hydrologic Observatories” to improve the predictive 

understanding of the flow paths, fluxes, and 
residence times of water, sediments and nutrients 
across a range of spatial and temporal scales.

– “Digital Watersheds, ” an assembly and synthesis for 
a hydrologic region of point hydrologic observations, 
GIS, remote sensing, and weather and climate 
gridded data. The intent is to have a comprehensive 
digital description of the physical environment and 
water conditions within a CUAHSI observatory.



Characteristics:
• Size: 850 km2

• Glaciated deposits
• Least disturbed watershed 
between Boston and New York 
City
• Riparian study sites 
predominately mature red maple 
forests
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Hotspots:  Focus on hydro- bio- geo- chemically 
active “edges” between riparian zones and streams.
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Push Pull

Water Table

Soil Surface

2 cm
Mini-Piezometer

10 Liters of water occupies 
about 25 Liters of soil 

(~ 40 kg when dry)

15-30 cm Introduced
Plume

Push-Pull Method
1. Pump groundwater.
2. Amend with 15NO3, Br-, SF6.
3. Lower DO to ambient levels with inert gas.
4. Push into well.
5. Incubate.
6. Pull from well.
7. Analyze for 15N2, 15N2O, 15NO3, Br-, SF6

Source:  Addy et al. 2002
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Riparian groundwater denitrification rates decline 
sharply with distance from the stream.  Evidence 
for a “hydrologic edge”? 

Source:  Kellogg et al. 2005



What might create hotspots at the 
riparian/stream inteface:

• Alluvial carbon 
deposits?

• Something in the 
water?
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The Social Science Angle:
• Extension, education and outreach can improve 

perceptions and knowledge of “sources”:
– But what do people know about sinks?
– Do we (physical, biological, social scientists and land managers) 

understand how “farm scale” sink activities translate to the 
landscape or watershed scale?
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Summary and Conclusions:

• Some promising technology, especially high 
technology solutions for drained areas.

• Some real challenges:
– Riparian evaluations MUST include assessment of 

flow paths between the upland, the riparian zone 
and the stream, and should consider hotspots:

• Eco-hydrological models and “digital watersheds” are 
new conceptual and practical tools that should allow us 
to assess flow paths and hotspots on a routine basis.

– Does the watershed/landscape approach really 
work in agricultural areas?
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Hydrologic complexities can reduce the 
effectiveness of trench bioreactors:

Source:  Louis Schipper, Landcare Research



Bioreactors
Nitrate Reductions
- 65% in mass (Jaynes et al., 2004)
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Combining practices can produce 
significant nitrogen removal


