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v Research Motivation

ØModeling the retention of colloidal particles in soils is important to understanding water 

contamination from viruses, bacteria or contaminants adsorbed on colloids. Particles 

transported by fluid remain in the soil when they arrive at constrictions in the pore space 

too small to admit them. Theories of this phenomenon predict that dilute concentrations of 

particles smaller than the smallest nominal pore throats should migrate without retention.  

But many investigators have reported that particles too large to undergo filtration and too 

small to be strained are nevertheless retained in a porous medium.  

ØWe propose a geometric explanation for this observation, namely that particles are 

strained not just in throats between three grains, but also in gaps between pairs of grains.  

We support this explanation by characterizing such gaps in model soils (dense random 

packings of spheres).
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figure; see Fig. 2).

Figure 2: a)Delaunay cell from the Finney packing, and 
b) A cluster of five pores surrounding a small gap 
between grains

v Statistical characterization of the pore space in model soils

ØParticles 3 to 9 times smaller than pore throats underwent appreciable retention in 

sand filters. Of primary interest are gaps having widths between 1/9 to 1/3 of the of the 

biggest pore throat diameter. These widths are 0.03 and 0.1R, R being the sphere radius. 

The number density of such gaps is about 0.2 per R3 bulk volume in the model soils.  This 

is enough to trap a significant number of particles in the size range of interest. The 

density of gaps is comparable to the density of small throats, which is about 0.3 per R3.  

For comparison, the number density of point contacts is about 0.9 per R3. 
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ØThe real packing measured by Finney and different computed-generated 

sphere packings showed similar statistics regarding number of neighbors and gap 

densities.  All the spheres in the packings have the same radius.

Figure 3: a) Histograms showing gap distribution for two 
different packings. b) Number of neighbors  within 0.03 and 
0.1 radius for each sphere in  the Finney packing

Figure 4:  Gap density for different 
gap widths for the Finney packing 
and 4 random packings
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v Flow Rate Through Gaps
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Figure 6: Conductance by 
length vs. range of capture  
for gaps in the range of 
interest

ØA particle of diameter d=wgap will be strained 

only if the stream line carrying it passes through 

this minimum constriction. The probability of this 

event is infinitesimal. In contrast a particle of d> 

wgap will be strained if it passes within some finite 

distance a of the minimum constriction. The 

probability of entering this range of capture is 

finite and is measured by the flow rate within this 

distance of the minimum constriction. Using the 

slit approximation the local flow rate relevant to 

particles of size d Is: 

q=2awgap ugap

v Pressure Gradient in Gaps

Figure 8: Pressure contours. The center of the gap and the radius 
of capture are shown. The  range of capture gets  bigger as the 
ratio d/D increases

v Conclusions

ØThese data enable a prediction of particle trapping in gaps as a function of particle size. 

ØWe obtain a conservative estimate for the volume of particles that can be trapped in 

gaps. The predictions are consistent with experiments, providing new insight into the 

mechanism of straining. 

ØThe frequency distribution of gaps between grains and the flow rates through each gap 

for a given particle size enter the continuum model via the local flow distribution. Data from 

pore throats will be combined with data from gaps to form the complete flow distribution

Figure 7: Plane containing the centers of 5 neighboring 
Delaunay cells before translation and rotation.

ØFuture work: From here we will calculate the local gradient in potential in the  

plane normal to the line that joins two grains separated by a gap. This potential 

drives flow through the gap. The flow through the gap is an important quantity in 

theories of straining.
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Figure 5: Scheme of the range of 
capture

Ø Steady flow through the model soil creates a pressure variation from 

pore to pore. The volumetric flow rate through a pore throat (Fig. 2) is the 

product of its conductance and the difference in potential in the two 

pores connected by the throat. The steady-state flow field is determined 

from the requirement that mass does not accumulate in any pore. We use 

the resulting pore pressures and gap conductances to estimate flow 

velocity through each gap.
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Øg* is proportional to the gap width cubed times the range of capture. For a 

given gap width the range of capture increases as the particles strained 

become bigger. 

ØThe centers of five  neighboring 

Delaunay cells containing a gap are in 

the same plane (Fig. 2b). The objective 

is to relate pressure with spatial 

coordinates to estimate the pressure 

gradient in this plane.

Ø After translation and rotation the 

plane coincides with  the plane z=0.

Ø Once we have rotated the plane 

and have the pressure as a function of 

only 2 coordinates x and y it is easy to 

plot pressure contours . The center of 

the gap is somewhere in the plane.

ØThe pressure fit the  spatial 

coordinates  in the form P = Ax +By + C
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