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Introduction

USDA-CREES Grant “2001-01170 was awarded to the Department of Geu\ngy at CSU Bakersfield in
the Fall of 2001 for a project entitled
of the Kern Water Bank: Implications for other Alluvial Fan-type Aquifers in Agricultural Regions with
Arid to Semi-Arid Climates.” The subject of this project is the Kern Water Bank, a ~ 40 square-mile
groundwater storage and management facility on the Kern River Alluvial Fan with a capacity of
~1,000,000 acre-ft (Figure 1). The principal goals of the project included the following:
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Project Goals
I. 3-D computer-based mapping of the sedimentary layers
containing the aquifers of the Kern Water Bank (KWB), an
optimal case study.
Il. Development of depositional models from results of Goal #1.
Ill. Refinement of depositional models to allow for prediction of
aquifer characteristic (e.g., water quality, permeability, etc.).

Why map sedimentary layers?
ultimately is main control on hydraulic conductivity, effective
storage capacity, and groundwater quality.

Why bother with depositional models?
Depositional models allow one to predict stratigraphy into unknown area
(e.g., beyond the limits of the study area or between far-spaced wells). They
also foster associated models regarding water quality. See 2nd page of this
presentation for example of how a depositional model led to a better
understanding of groundwater quality.
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1.1 Defining Mapping Units
Sedimentary units were defined in 162 wells by electrical resistivity from electric logs in these:
wells which reflects grain-size/clay content (Figure 2).

Figure 2. Sample electric logs from two wells ~one-half mile apart n the Kem Water Bank.
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Figure 3. 2-D contour plots depicting the a) elevation of the bottom of D2 and b thickness (sopach) of D2. Details are
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1.2 Mapping Results: 2-D Contour Plots of Sedimentary Units

Each mapped sedimentary unit contains two sets of x, y, z data. The x and y values are the same for both sets; they
define the map location of all of the wells in which the unit was found. The z data in one case is elevation of the
bottom of the unit; in the other case its that of the top of the unit. For every unit each set of location and depth
data can be represented on amap wherein colors represent a range of elevation values. For example, Figure
3a shows the elevation of the bottom of the D2 unit (see Figure 2 for definition of unit names). This map is commonly]
referred to as a structure map on the bottom of the unit. Figure 3b shows the thickness (aka isopach) of unit D2. A
set of such maps plus structure maps on the tops of the units were constructed for all mapped units using
Geographix™ geological interpretation software from Landmark, Inc.

1.3 Mapping Results: 3-D Block Diagram of Sedimentary Units
The positions and thicknesses of all sedimentary units can be shown in one 3-D diagram (Figure 4). In this
case each unit at each location was given an arbitrary number cmespondlng to unit type (silts/clay=1; sands=100).

This 3-D distribution of 1's and 100's was then prism the Kern
Water Bank and the resultant values asslgned cclurs within a ten-unit vange This model was constructed in the
™
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Figure 4. 3-D block diagram showing distribution of sands and sitsiclays throughout the Kern Water Bank down toa depth of
Details in




1.1 Depositional Models for the Kern Water Bank Sediments
The sediments of the Kem Water Bank have been deposited over the past million years or so by an alluvial fan-delta
system built by the Kern River (Figure 1). In such cases, stacked packages of sediments

by
uward grain 4ize6 are common. 1f the packages are predomimantly fne-grained (2.0, Sits and claye) they likely were
deposited at the distal end of the alluvial fan as part of a prograding delta into a terminal lake. If they are coarse-grained
(e.g., gravels and sands), then they were likely deposited near the top of the fan close to where the river emerges onto the
valley floor (e.g., Prothero and Schwab, 2004).

11.2 A Prograding Delta Depositional Model for the “LsCus2” Unit

One of the “gross” units (Figure 2) mapped in this project is a sequence of cuavsenmg upward units that thickens toward
the southwest of the study area (Figure 5). This is the d unit found in the Kern
Walev Bank hence, |ls name “LsCus2" (Large-scale Coarsening- upward sequence 2). For reasons discussed in the

e propose that this unit was deposited several hundreds of thousands of years ago as a
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Figure 5. Contour plot (tsopach) of LsCus2

deposit

Getta buitt bainward starting at the then-distal end of the Kern River Alluvial Fan (Figure 6).

Figure 6. Contour plotof thickness of LsCus2
prograding defa deposit superimposed on map
of Kem River alluviafan system. LsCus2
thickens toward terminal Buena Vista Lake at
the toe of the alluvialfan. This spatial
relationship suppors the interpretation of a
lacustrine environment of depositon for the
LsCus2 sediments,

11.3 Testing the Prograding Delta Depositional Model: Stepping Out
from the Water Bank

If the LsCus2 unitwas deposited in a prograding delta, then it should be related spatially to a sequence of sediments
deposited in a terminal lake. This is indeed the case as shown in Figure 7 where the LsCus2 was bulit upon a lacustrine
clay deposit that is likely correlative to the “Corcoran Clay”, a clay layer found throughout most of the Central Valley that
was deposited in an enormous lake (Figure 8) 800,000-650,000 years ago (Sarna-Woijcicki, 1995; Harden, 2004; Negrini
etal., 2004).
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Figure 7. Cross-section showing stratigraphi relationship between LsCus2 deltaic deposit (yellow) and “Corcoran
Clay” (biue), a unit deposited in a Central Valley -wide lake several hundreds of thousands of years ago. Profie ine
for this cross-section (A-A) is shown in Figure 6.

Figure 8. “Lake Clyde," the lake in which the
Corcoran Clay (and LsCus2?) were deposited
(from Harden, 2004)

1.4 Spatial Association of the LsCus2 Unit with Elevated Groundwater As
[The LsCus2 Unit is closely associated, both in map view (Figure 9) and with respect to depth (Figure 10) with the only
bccurrence of elevated groundwater As in the Kern Water Bank.

Figure 9. The only region of elevated
‘groundwiater AS concentrations in the Kem
Water Bank superimposed on the LsCus2
map from Figure 5.

only region of Kern Water Bank (KWB) where groundwater
arsenic concentrations [As] are >5 mg/L
(note: in general, quality of KWB water is exceptionally high)
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IIl.1 Incorporating Elevated Groundwater As into the LsCus2 Depositional

[As]in groundwater (ppb) Total organic matter (%)
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Deltaic sediments, as opposed to those deposited in stream channels farther up alluvial fans, are deposited under the surface of a lake

and, as a result, are likely to undergo reducing rather than oxidizing geochemical conditions. Such a scenario is supported by higher
total organic carbon (TOC) and lower magnetic susceptibility (MS) in the LsCus2 interval as shown in Figure 10. Under reducing

conditions organic mater is commonly preserved and, also, a series of chemical reactions take place that reduces minerals and ionic

Species that start out in the oxidized state. These reactions progressively destroy Mn-oxide minerals, Fe-oxide minerals, and then
sulfates (e.g., Cohen, 2003; and Evans and Heller, 2003; and references therein). If the reducing geochemical conditions are
extreme enough and if sulfate is present, sulfate reduction occurs resulting in the formation of pyrite. Arsenic substitutes
sulfur in pyrite. Thus pyrite, if it is present, can serve as an arsenic reservoir. A later change to oxidizing geochemical
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conditions can potentially dissolve the pyrite and release the arsenic into the groundwater.
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jii.2 Testing the LsCus?2 Depositional Model: Groundwater Arsenic

I'he previous paragraph outlines a model for high groundwater arsenic in association with the LsCus2 prograding delta
leposit. This model predicts that 1) pyrite is present in the LsCus2 deposit, z) pynle exhibits dissolution textures, and 3)
yrite has concentrations of As high enough to produce the arsel found in with]
he LsCus2 deposit. As shown in Figure 11, model predi 1) and 2) are with

Figure 11. a) SEM photographof SCusdepost. 5501t in Well
“TAR2SSZH.
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Future Work

Preparations are under way to measure the arsenic concentration in the pyrite shown in Figure 11 with the microprobe facilities at UC
Davis. We are also inspecting additional samples from other units in Well 23H and from another well which has low groundwater
arsenic concentrations.
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